Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 221
Filter
1.
medRxiv ; 2024 Feb 27.
Article in English | MEDLINE | ID: mdl-38464113

ABSTRACT

In this report, we provide a follow-up analysis of a previously published genome-wide association study of host genetic variants associated with inter-individual variations in cellular immune responses to mumps vaccine. Here we report the results of a polygenic score (PGS) analysis showing how common variants can predict mumps vaccine response. We found higher PGS for IFNγ, IL-2, and TNFα were predictive of higher post-vaccine IFNγ (p-value = 2e-6), IL-2 (p = 2e-7), and TNFα (p = 0.004) levels, respectively. Control of immune responses after vaccination is complex and polygenic in nature. Our results suggest that the PGS-based approach enables better capture of the combined genetic effects that contribute to mumps vaccine-induced immunity, potentially offering a more comprehensive understanding than traditional single-variant GWAS. This approach will likely have broad utility in studying genetic control of immune responses to other vaccines and to infectious diseases.

2.
Circ Genom Precis Med ; : e004272, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38380516

ABSTRACT

BACKGROUND: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (CHD; PRSCHD) for 5 genetic ancestry groups. METHODS: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding and continuous shrinkage priors (polygenic risk score for CHD developed using ancestry-based continuous shrinkage methods) applied to summary statistics from the largest multi-ancestry genome-wide association study meta-analysis for CHD to date, including 1.1 million participants from 5 major genetic ancestry groups. Following training and optimization in the Million Veteran Program, we evaluated the best-performing PRSCHD in 176 988 individuals across 9 diverse cohorts. RESULTS: Multi-ancestry polygenic risk score for CHD developed using pruning and thresholding methods and polygenic risk score for CHD developed using ancestry-based continuous shrinkage methods outperformed ancestry-specific Polygenic risk score for CHD developed using pruning and thresholding methods and polygenic risk score for CHD developed using ancestry-based continuous shrinkage methods across a range of tuning values. Two best-performing multi-ancestry PRSCHD (ie, polygenic risk score for CHD developed using pruning and thresholding methods optimized using a multi-ancestry population and polygenic risk score for CHD developed using ancestry-based continuous shrinkage methods optimized using a multi-ancestry population) and 1 ancestry-specific (PRSCSxEUR) were taken forward for validation. Polygenic risk score for CHD developed using pruning and thresholding methods (PT) optimized using a multi-ancestry population demonstrated the strongest association with CHD in individuals of South Asian genetic ancestry and European genetic ancestry (odds ratio per 1 SD [95% CI, 2.75 [2.41-3.14], 1.65 [1.59-1.72]), followed by East Asian genetic ancestry (1.56 [1.50-1.61]), Hispanic/Latino genetic ancestry (1.38 [1.24-1.54]), and African genetic ancestry (1.16 [1.11-1.21]). Polygenic risk score for CHD developed using ancestry-based continuous shrinkage methods optimized using a multi-ancestry population showed the strongest associations in South Asian genetic ancestry (2.67 [2.38-3.00]) and European genetic ancestry (1.65 [1.59-1.71]), lower in East Asian genetic ancestry (1.59 [1.54-1.64]), Hispanic/Latino genetic ancestry (1.51 [1.35-1.69]), and the lowest in African genetic ancestry (1.20 [1.15-1.26]). CONCLUSIONS: The use of summary statistics from a large multi-ancestry genome-wide meta-analysis improved the performance of PRSCHD in most ancestry groups compared with single-ancestry methods. Despite the use of one of the largest and most diverse sets of training and validation cohorts to date, improvement of predictive performance was limited in African genetic ancestry. This highlights the need for larger Genome-wide association study datasets of underrepresented populations to enhance the performance of PRSCHD.

3.
medRxiv ; 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-38260263

ABSTRACT

Background: The joint effects of polygenic risk and social determinants of health (SDOH) on coronary heart disease (CHD) in the United States are unknown. Methods: In 67,256 All of Us (AoU) participants with available SDOH data, we ascertained self-reported race/ethnicity and calculated a polygenic risk score for CHD (PRS CHD ). We used 90 SDOH survey questions to develop an SDOH score for CHD (SDOH CHD ). We assessed the distribution of SDOH CHD across self-reported races and US states. We tested the joint association of SDOH CHD and PRS CHD with CHD in regression models that included clinical risk factors. Results: SDOH CHD was highest in self-reported black and Hispanic people. Self-reporting as black was associated with higher odds of CHD but not after adjustment for SDOH CHD . Median SDOH CHD values varied by US state and were associated with heart disease mortality. A 1-SD increase in SDOH CHD was associated with CHD (OR=1.36; 95% CI, 1.29 to 1.46) and incident CHD (HR=1.73; 95% CI, 1.27 to 2.35) in models that included PRS CHD and clinical risk factors. Among people in the top 20% of PRS CHD , CHD prevalence was 4.8% and 7.8% in the bottom and top 20% of SDOH CHD , respectively. Conclusions: Increased odds of CHD in self-reported black people are likely due to higher SDOH burden. SDOH and PRS were independently associated with CHD in the US. Our findings emphasize the need to consider both PRS and SDOH for equitable disease risk assessment.

4.
Nat Rev Genet ; 25(1): 8-25, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37620596

ABSTRACT

Polygenic risk scores (PRSs) summarize the genetic predisposition of a complex human trait or disease and may become a valuable tool for advancing precision medicine. However, PRSs that are developed in populations of predominantly European genetic ancestries can increase health disparities due to poor predictive performance in individuals of diverse and complex genetic ancestries. We describe genetic and modifiable risk factors that limit the transferability of PRSs across populations and review the strengths and weaknesses of existing PRS construction methods for diverse ancestries. Developing PRSs that benefit global populations in research and clinical settings provides an opportunity for innovation and is essential for health equity.


Subject(s)
Genetic Predisposition to Disease , Humans , Risk Factors , Multifactorial Inheritance , Precision Medicine , Genome-Wide Association Study
5.
Eur J Hum Genet ; 32(2): 209-214, 2024 Feb.
Article in English | MEDLINE | ID: mdl-37752310

ABSTRACT

Polygenic scores (PGS) for coronary heart disease (CHD) are constructed using GWAS summary statistics for CHD. However, pleiotropy is pervasive in biology and disease-associated variants often share etiologic pathways with multiple traits. Therefore, incorporating GWAS summary statistics of additional traits could improve the performance of PGS for CHD. Using lasso regression models, we developed two multi-PGS for CHD: 1) multiPGSCHD, utilizing GWAS summary statistics for CHD, its risk factors, and other ASCVD as training data and the UK Biobank for tuning, and 2) extendedPGSCHD, using existing PGS for a broader range of traits in the PGS Catalog as training data and the Atherosclerosis Risk in Communities Study (ARIC) cohort for tuning. We evaluated the performance of multiPGSCHD and extendedPGSCHD in the Mayo Clinic Biobank, an independent cohort of 43,578 adults of European ancestry which included 4,479 CHD cases and 39,099 controls. In the Mayo Clinic Biobank, a 1 SD increase in multiPGSCHD and extendedPGSCHD was associated with a 1.66-fold (95% CI: 1.60-1.71) and 1.70-fold (95% CI: 1.64-1.76) increased odds of CHD, respectively, in models that included age, sex, and 10 PCs, whereas an already published PGS for CHD (CHD_PRSCS) increased the odds by 1.50 (95% CI: 1.45-1.56). In the highest deciles of extendedPGSCHD, multiPGSCHD, and CHD_PRSCS, 18.4%, 17.5%, and 16.3% of patients had CHD, respectively.


Subject(s)
Coronary Disease , Adult , Humans , Coronary Disease/genetics , Risk Factors , Phenotype
6.
Cancer Prev Res (Phila) ; 17(2): 77-84, 2024 02 02.
Article in English | MEDLINE | ID: mdl-38154464

ABSTRACT

Refinement of breast cancer risk estimates with a polygenic-risk score (PRS) may improve uptake of risk-reducing endocrine therapy (ET). A previous clinical trial assessed the influence of adding a PRS to traditional risk estimates on ET use. We stratified participants according to PRS-refined breast cancer risk and evaluated ET use and ET-related quality of life (QOL) at 1-year (previously reported) and 2-year follow-ups. Of 151 participants, 58 (38.4%) initiated ET, and 22 (14.6%) discontinued ET by 2 years; 42 (27.8%) and 36 (23.8%) participants were using ET at 1- and 2-year follow-ups, respectively. At the 2-year follow-up, 39% of participants with a lifetime breast cancer risk of 40.1% to 100.0%, 18% with a 20.1% to 40.0% risk, and 16% with a 0.0% to 20.0% risk were taking ET (overall P = 0.01). Moreover, 40% of participants whose breast cancer risk increased by 10% or greater with addition of the PRS to a traditional breast cancer-risk model were taking ET versus 0% whose risk decreased by 10% or greater (P = 0.004). QOL was similar for participants taking or not taking ET at 1- and 2-year follow-ups, although most who discontinued ET did so because of adverse effects. However, these QOL results may have been skewed by the long interval between QOL surveys and lack of baseline QOL data. PRS-informed breast cancer prevention counseling has a lasting, but waning, effect over time. Additional follow-up studies are needed to address the effect of PRS on ET adherence, ET-related QOL, supplemental breast cancer screening, and other risk-reducing behaviors. PREVENTION RELEVANCE: Risk-reducing medications for breast cancer are considerably underused. Informing women at risk with precise and individualized risk assessment tools may substantially affect the incidence of breast cancer. In our study, a risk assessment tool (IBIS-polygenic-risk score) yielded promising results, with 39% of women at highest risk starting preventive medication.


Subject(s)
Breast Neoplasms , Female , Humans , Breast Neoplasms/epidemiology , Breast Neoplasms/genetics , Breast Neoplasms/prevention & control , Quality of Life , Follow-Up Studies , Risk Assessment , Genetic Risk Score , Risk Factors , Genetic Predisposition to Disease
7.
Vaccine ; 41(44): 6579-6588, 2023 10 20.
Article in English | MEDLINE | ID: mdl-37778899

ABSTRACT

BACKGROUND: We have previously described genetic polymorphisms in candidate genes that are associated with inter-individual variations in antibody responses to mumps vaccination. To expand upon our previous work, we performed a genome-wide association study (GWAS) to discover host genetic variants associated with mumps vaccine-induced cellular immune responses. METHODS: We performed a GWAS of mumps-specific immune response outcomes (11 secreted cytokines/chemokines) in a cohort of 1,406 subjects. RESULTS: Among the 11 cytokine/chemokines we studied, four (IFN-γ, IL-2, IL-1ß, and TNFα) demonstrated GWAS signals reaching genome-wide significance (p < 5 × 10-8). A genomic region (encoding Sialic acid-binding immunoglobulin-type lectins/SIGLEC) located on chromosome 19q13 (p < 5 × 10-8) was associated with both IL-1ß and TNFα responses. The SIGLEC5/SIGLEC14 region contained 11 statistically significant single nucleotide polymorphisms (SNPs), including the intronic SIGLEC5 rs872629 (p = 1.3E-11) and rs1106476 (p = 1.32E-11) whose alternate alleles were significantly associated with decreased levels of mumps-specific IL-1ß (rs872629, p = 1.77E-09; rs1106476, p = 1.78E-09) and TNFα (rs872629, p = 1.3E-11; rs1106476, p = 1.32E-11) production. CONCLUSIONS: Our results suggest that SNPs in the SIGLEC5/SIGLEC14 genes play a role in cellular and inflammatory immune responses to mumps vaccination. These findings motivate further research into the functional roles of SIGLEC genes in the regulation of mumps vaccine-induced immunity.


Subject(s)
Measles , Mumps , Rubella , Humans , Mumps Vaccine/genetics , Tumor Necrosis Factor-alpha , Mumps/prevention & control , Genome-Wide Association Study , Immunity, Cellular , Cytokines , Chemokines , Sialic Acid Binding Immunoglobulin-like Lectins/genetics , Measles-Mumps-Rubella Vaccine , Antibodies, Viral , Rubella/prevention & control
8.
medRxiv ; 2023 Jun 06.
Article in English | MEDLINE | ID: mdl-37609230

ABSTRACT

Background: Predictive performance of polygenic risk scores (PRS) varies across populations. To facilitate equitable clinical use, we developed PRS for coronary heart disease (PRSCHD) for 5 genetic ancestry groups. Methods: We derived ancestry-specific and multi-ancestry PRSCHD based on pruning and thresholding (PRSP+T) and continuous shrinkage priors (PRSCSx) applied on summary statistics from the largest multi-ancestry genome-wide meta-analysis for CHD to date, including 1.1 million participants from 5 continental populations. Following training and optimization of PRSCHD in the Million Veteran Program, we evaluated predictive performance of the best performing PRSCHD in 176,988 individuals across 9 cohorts of diverse genetic ancestry. Results: Multi-ancestry PRSP+T outperformed ancestry specific PRSP+T across a range of tuning values. In training stage, for all ancestry groups, PRSCSx performed better than PRSP+T and multi-ancestry PRS outperformed ancestry-specific PRS. In independent validation cohorts, the selected multi-ancestry PRSP+T demonstrated the strongest association with CHD in individuals of South Asian (SAS) and European (EUR) ancestry (OR per 1SD[95% CI]; 2.75[2.41-3.14], 1.65[1.59-1.72]), followed by East Asian (EAS) (1.56[1.50-1.61]), Hispanic/Latino (HIS) (1.38[1.24-1.54]), and weakest in African (AFR) ancestry (1.16[1.11-1.21]). The selected multi-ancestry PRSCSx showed stronger associacion with CHD in comparison within each ancestry group where the association was strongest in SAS (2.67[2.38-3.00]) and EUR (1.65[1.59-1.71]), progressively decreasing in EAS (1.59[1.54-1.64]), HIS (1.51[1.35-1.69]), and lowest in AFR (1.20[1.15-1.26]). Conclusions: Utilizing diverse summary statistics from a large multi-ancestry genome-wide meta-analysis led to improved performance of PRSCHD in most ancestry groups compared to single-ancestry methods. Improvement of predictive performance was limited, specifically in AFR and HIS, despite use of one of the largest and most diverse set of training and validation cohorts to date. This highlights the need for larger GWAS datasets of AFR and HIS individuals to enhance performance of PRSCHD.

10.
Mayo Clin Proc ; 98(8): 1241-1253, 2023 08.
Article in English | MEDLINE | ID: mdl-37536808

ABSTRACT

Clinical trials have been the bedrock of research to evaluate the safety and efficacy of new medical, surgical, or other interventions. Traditional "explanatory" clinical trials have aimed to explain a biological cause (new treatment) and effect (patient outcome) while controlling for many factors that might impact the evaluation, such as restricted eligibility criteria, frequent follow-up visits, and multiple clinical and laboratory measures. Despite the benefits of a well-controlled clinical trial, compromises have been made that can limit who might benefit from a new intervention, can increase complexity of the conduct of a trial, or that lead to excessively long durations of trials. An alternative approach to evaluate the effectiveness of an intervention is based on "pragmatic" clinical trials, which consider how an intervention affects a patient's condition in the real world, accounting for how to optimize an intervention within the operations of busy and diverse clinical practices. Although we describe explanatory and pragmatic trial designs as separate approaches, there is a continuum of approaches that intersect. Some key points are the need to maintain scientific rigor, increase efficiency of clinical trials operations, ensure that trial results can be generalized to a broad spectrum of patients, and balance the needs of real-world clinical care. Pragmatic trials can leverage technology and telecommunication strategies of decentralized trials to further reach underrepresented and underserved patients to close the health disparity gaps.


Subject(s)
Research Design , Humans , Time Factors , Clinical Trials as Topic
11.
medRxiv ; 2023 May 15.
Article in English | MEDLINE | ID: mdl-37292833

ABSTRACT

Genome-wide polygenic risk scores (GW-PRS) have been reported to have better predictive ability than PRS based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer risk variants from multi-ancestry GWAS and fine-mapping studies (PRS 269 ). GW-PRS models were trained using a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls used to develop the multi-ancestry PRS 269 . Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California/Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI=0.635-0.677) in African and 0.844 (95% CI=0.840-0.848) in European ancestry men and corresponding prostate cancer OR of 1.83 (95% CI=1.67-2.00) and 2.19 (95% CI=2.14-2.25), respectively, for each SD unit increase in the GW-PRS. However, compared to the GW-PRS, in African and European ancestry men, the PRS 269 had larger or similar AUCs (AUC=0.679, 95% CI=0.659-0.700 and AUC=0.845, 95% CI=0.841-0.849, respectively) and comparable prostate cancer OR (OR=2.05, 95% CI=1.87-2.26 and OR=2.21, 95% CI=2.16-2.26, respectively). Findings were similar in the validation data. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the multi-ancestry PRS 269 constructed with fine-mapping.

12.
Am J Hum Genet ; 110(7): 1200-1206, 2023 07 06.
Article in English | MEDLINE | ID: mdl-37311464

ABSTRACT

Genome-wide polygenic risk scores (GW-PRSs) have been reported to have better predictive ability than PRSs based on genome-wide significance thresholds across numerous traits. We compared the predictive ability of several GW-PRS approaches to a recently developed PRS of 269 established prostate cancer-risk variants from multi-ancestry GWASs and fine-mapping studies (PRS269). GW-PRS models were trained with a large and diverse prostate cancer GWAS of 107,247 cases and 127,006 controls that we previously used to develop the multi-ancestry PRS269. Resulting models were independently tested in 1,586 cases and 1,047 controls of African ancestry from the California Uganda Study and 8,046 cases and 191,825 controls of European ancestry from the UK Biobank and further validated in 13,643 cases and 210,214 controls of European ancestry and 6,353 cases and 53,362 controls of African ancestry from the Million Veteran Program. In the testing data, the best performing GW-PRS approach had AUCs of 0.656 (95% CI = 0.635-0.677) in African and 0.844 (95% CI = 0.840-0.848) in European ancestry men and corresponding prostate cancer ORs of 1.83 (95% CI = 1.67-2.00) and 2.19 (95% CI = 2.14-2.25), respectively, for each SD unit increase in the GW-PRS. Compared to the GW-PRS, in African and European ancestry men, the PRS269 had larger or similar AUCs (AUC = 0.679, 95% CI = 0.659-0.700 and AUC = 0.845, 95% CI = 0.841-0.849, respectively) and comparable prostate cancer ORs (OR = 2.05, 95% CI = 1.87-2.26 and OR = 2.21, 95% CI = 2.16-2.26, respectively). Findings were similar in the validation studies. This investigation suggests that current GW-PRS approaches may not improve the ability to predict prostate cancer risk compared to the PRS269 developed from multi-ancestry GWASs and fine-mapping.


Subject(s)
Genetic Predisposition to Disease , Prostatic Neoplasms , Humans , Male , Black People/genetics , Genome-Wide Association Study , Multifactorial Inheritance/genetics , Prostatic Neoplasms/genetics , Risk Factors , White People/genetics
13.
medRxiv ; 2023 May 01.
Article in English | MEDLINE | ID: mdl-37205333

ABSTRACT

Background: We have previously described genetic polymorphisms in candidate genes that are associated with inter-individual variations in antibody responses to mumps vaccination. To expand upon our previous work, we performed a genome-wide association study (GWAS) to discover host genetic variants associated with mumps vaccine-induced cellular immune responses. Methods: We performed a GWAS of mumps-specific immune response outcomes (11 secreted cytokines/chemokines) in a cohort of 1,406 subjects. Results: Among the 11 cytokine/chemokines we studied, four (IFN-γ, IL-2, IL-1ß, and TNFα) demonstrated GWAS signals reaching genome-wide significance (p<5 x 10 -8 ). A genomic region (encoding Sialic acid-binding immunoglobulin-type lectins/SIGLEC) located on chromosome 19q13 (p<5×10 -8 ) was associated with both IL-1ß and TNFα responses. The SIGLEC5/SIGLEC14 region contained 11 statistically significant single nucleotide polymorphisms (SNPs), including the intronic SIGLEC5 rs872629 (p=1.3E-11) and rs1106476 (p=1.32E-11) whose alternate alleles were significantly associated with decreased levels of mumps-specific IL-1ß (rs872629, p=1.77E-09; rs1106476, p=1.78E-09) and TNFα (rs872629, p=1.3E-11; rs1106476, p=1.32E-11) production. Conclusions: Our results suggest that SNPs in the SIGLEC5/SIGLEC14 genes play a role in cellular and inflammatory immune responses to mumps vaccination. These findings motivate further research into the functional roles of SIGLEC genes in the regulation of mumps vaccine-induced immunity.

14.
Curr Atheroscler Rep ; 25(6): 323-330, 2023 06.
Article in English | MEDLINE | ID: mdl-37223852

ABSTRACT

PURPOSE OF REVIEW: There is considerable interest in using polygenic risk scores (PRSs) for assessing risk of atherosclerotic cardiovascular disease (ASCVD). A barrier to the clinical use of PRSs is heterogeneity in how PRS studies are reported. In this review, we summarize approaches to establish a uniform reporting framework for PRSs for coronary heart disease (CHD), the most common form of ASCVD. RECENT FINDINGS: Reporting standards for PRSs need to be contextualized for disease specific applications. In addition to metrics of predictive performance, reporting standards for PRSs for CHD should include how cases/control were ascertained, degree of adjustment for conventional CHD risk factors, portability to diverse genetic ancestry groups and admixed individuals, and quality control measures for clinical deployment. Such a framework will enable PRSs to be optimized and benchmarked for clinical use.


Subject(s)
Atherosclerosis , Cardiovascular Diseases , Coronary Disease , Humans , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/genetics , Risk Factors , Atherosclerosis/genetics , Genome-Wide Association Study , Genetic Predisposition to Disease
15.
Am J Hum Genet ; 110(4): 575-591, 2023 04 06.
Article in English | MEDLINE | ID: mdl-37028392

ABSTRACT

Leveraging linkage disequilibrium (LD) patterns as representative of population substructure enables the discovery of additive association signals in genome-wide association studies (GWASs). Standard GWASs are well-powered to interrogate additive models; however, new approaches are required for invesigating other modes of inheritance such as dominance and epistasis. Epistasis, or non-additive interaction between genes, exists across the genome but often goes undetected because of a lack of statistical power. Furthermore, the adoption of LD pruning as customary in standard GWASs excludes detection of sites that are in LD but might underlie the genetic architecture of complex traits. We hypothesize that uncovering long-range interactions between loci with strong LD due to epistatic selection can elucidate genetic mechanisms underlying common diseases. To investigate this hypothesis, we tested for associations between 23 common diseases and 5,625,845 epistatic SNP-SNP pairs (determined by Ohta's D statistics) in long-range LD (>0.25 cM). Across five disease phenotypes, we identified one significant and four near-significant associations that replicated in two large genotype-phenotype datasets (UK Biobank and eMERGE). The genes that were most likely involved in the replicated associations were (1) members of highly conserved gene families with complex roles in multiple pathways, (2) essential genes, and/or (3) genes that were associated in the literature with complex traits that display variable expressivity. These results support the highly pleiotropic and conserved nature of variants in long-range LD under epistatic selection. Our work supports the hypothesis that epistatic interactions regulate diverse clinical mechanisms and might especially be driving factors in conditions with a wide range of phenotypic outcomes.


Subject(s)
Epistasis, Genetic , Genome-Wide Association Study , Linkage Disequilibrium/genetics , Genotype , Biological Specimen Banks , United Kingdom , Polymorphism, Single Nucleotide/genetics
16.
Front Genet ; 13: 990486, 2022.
Article in English | MEDLINE | ID: mdl-36186433

ABSTRACT

The number of studies with information at multiple biological levels of granularity, such as genomics, proteomics, and metabolomics, is increasing each year, and a biomedical questaion is how to systematically integrate these data to discover new biological mechanisms that have the potential to elucidate the processes of health and disease. Causal frameworks, such as Mendelian randomization (MR), provide a foundation to begin integrating data for new biological discoveries. Despite the growing number of MR applications in a wide variety of biomedical studies, there are few approaches for the systematic analysis of omic data. The large number and diverse types of molecular components involved in complex diseases interact through complex networks, and classical MR approaches targeting individual components do not consider the underlying relationships. In contrast, causal network models established in the principles of MR offer significant improvements to the classical MR framework for understanding omic data. Integration of these mostly distinct branches of statistics is a recent development, and we here review the current progress. To set the stage for causal network models, we review some recent progress in the classical MR framework. We then explain how to transition from the classical MR framework to causal networks. We discuss the identification of causal networks and evaluate the underlying assumptions. We also introduce some tests for sensitivity analysis and stability assessment of causal networks. We then review practical details to perform real data analysis and identify causal networks and highlight some of the utility of causal networks. The utilities with validated novel findings reveal the full potential of causal networks as a systems approach that will become necessary to integrate large-scale omic data.

17.
Curr Cardiol Rep ; 24(9): 1169-1177, 2022 09.
Article in English | MEDLINE | ID: mdl-35796859

ABSTRACT

PURPOSE OF REVIEW: A polygenic risk score (PRS) is a measure of genetic liability to a disease and is typically normally distributed in a population. Individuals in the upper tail of this distribution often have relative risk equivalent to that of monogenic form of the disease. The majority of currently available PRSs for coronary heart disease (CHD) have been generated from cohorts of European ancestry (EUR) and vary in their applicability to other ancestry groups. In this report, we review the performance of PRSs for CHD across different ancestries and efforts to reduce variability in performance including novel population and statistical genetics approaches. RECENT FINDINGS: PRSs for CHD perform robustly in EUR populations but lag in performance in non-EUR groups, particularly individuals of African ancestry. Several large consortia have been established to enable genomic studies in diverse ancestry groups and develop methods to improve PRS performance in multi-ancestry contexts as well as admixed individuals. These include fine-mapping to ascertain causal variants, trans ancestry meta-analyses, and ancestry deconvolution in admixed individuals. PRSs are being used in the clinical setting but enthusiasm has been tempered by the variable performance in non-EUR ancestry groups. Increasing diversity in genomic association studies and continued innovation in methodological approaches are needed to improve PRS performance in non-EUR individuals for equitable implementation of genomic medicine.


Subject(s)
Coronary Disease , Genome-Wide Association Study , Coronary Disease/genetics , Genetic Predisposition to Disease , Humans , Risk Factors
18.
Clin Cancer Res ; 28(15): 3342-3355, 2022 08 02.
Article in English | MEDLINE | ID: mdl-35653140

ABSTRACT

PURPOSE: To identify molecular predictors of grade 3/4 neutropenic or leukopenic events (NLE) after chemotherapy using a genome-wide association study (GWAS). EXPERIMENTAL DESIGN: A GWAS was performed on patients in the phase III chemotherapy study SUCCESS-A (n = 3,322). Genotyping was done using the Illumina HumanOmniExpress-12v1 array. Findings were functionally validated with cell culture models and the genotypes and gene expression of possible causative genes were correlated with clinical treatment response and prognostic outcomes. RESULTS: One locus on chromosome 16 (rs4784750; NLRC5; P = 1.56E-8) and another locus on chromosome 13 (rs16972207; TNFSF13B; P = 3.42E-8) were identified at a genome-wide significance level. Functional validation revealed that expression of these two genes is altered by genotype-dependent and chemotherapy-dependent activity of two transcription factors. Genotypes also showed an association with disease-free survival in patients with an NLE. CONCLUSIONS: Two loci in NLRC5 and TNFSF13B are associated with NLEs. The involvement of the MHC I regulator NLRC5 implies the possible involvement of immuno-oncological pathways.


Subject(s)
Breast Neoplasms , Leukopenia , Breast Neoplasms/drug therapy , Breast Neoplasms/genetics , Female , Genetic Loci , Genetic Predisposition to Disease , Genome-Wide Association Study , Genotype , Humans , Intracellular Signaling Peptides and Proteins/genetics , Leukopenia/chemically induced , Leukopenia/genetics , Polymorphism, Single Nucleotide
19.
Nat Med ; 28(7): 1412-1420, 2022 07.
Article in English | MEDLINE | ID: mdl-35710995

ABSTRACT

Chronic kidney disease (CKD) is a common complex condition associated with high morbidity and mortality. Polygenic prediction could enhance CKD screening and prevention; however, this approach has not been optimized for ancestrally diverse populations. By combining APOL1 risk genotypes with genome-wide association studies (GWAS) of kidney function, we designed, optimized and validated a genome-wide polygenic score (GPS) for CKD. The new GPS was tested in 15 independent cohorts, including 3 cohorts of European ancestry (n = 97,050), 6 cohorts of African ancestry (n = 14,544), 4 cohorts of Asian ancestry (n = 8,625) and 2 admixed Latinx cohorts (n = 3,625). We demonstrated score transferability with reproducible performance across all tested cohorts. The top 2% of the GPS was associated with nearly threefold increased risk of CKD across ancestries. In African ancestry cohorts, the APOL1 risk genotype and polygenic component of the GPS had additive effects on the risk of CKD.


Subject(s)
Apolipoprotein L1 , Renal Insufficiency, Chronic , Apolipoprotein L1/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Genotype , Humans , Multifactorial Inheritance/genetics , Polymorphism, Single Nucleotide/genetics , Renal Insufficiency, Chronic/diagnosis , Renal Insufficiency, Chronic/genetics
20.
Nat Commun ; 13(1): 3428, 2022 06 14.
Article in English | MEDLINE | ID: mdl-35701404

ABSTRACT

Clinical and epidemiological studies have shown that circulatory system diseases and nervous system disorders often co-occur in patients. However, genetic susceptibility factors shared between these disease categories remain largely unknown. Here, we characterized pleiotropy across 107 circulatory system and 40 nervous system traits using an ensemble of methods in the eMERGE Network and UK Biobank. Using a formal test of pleiotropy, five genomic loci demonstrated statistically significant evidence of pleiotropy. We observed region-specific patterns of direction of genetic effects for the two disease categories, suggesting potential antagonistic and synergistic pleiotropy. Our findings provide insights into the relationship between circulatory system diseases and nervous system disorders which can provide context for future prevention and treatment strategies.


Subject(s)
Cardiovascular Diseases , Nervous System Diseases , Cardiovascular Diseases/genetics , Genetic Pleiotropy , Genetic Predisposition to Disease , Genome-Wide Association Study , Genomics , Humans , Nervous System Diseases/genetics , Polymorphism, Single Nucleotide
SELECTION OF CITATIONS
SEARCH DETAIL
...